Wheat genome sequencing hits a milestone

Laura Aiken
January 06, 2016
Written by
International - The International Wheat Genome Sequencing Consortium (IWGSC) has produced a whole genome assembly of bread wheat, the most widely grown cereal in the world. This announcement signals a major boost in advancing global research into crop improvement. The IWGSC indicated that a high quality bread wheat reference sequence will be available in less than two years.

"The new bread wheat de novo shotgun assembly made by NRGene represents a major breakthrough for the IWGSC integrated strategy towards delivering a high quality reference sequence for each of the 21 bread wheat chromosomes," said Nils Stein, a co-leader of the project from IPK Gatersleben in Germany, in a news release.

The project consisted of producing a whole genome assembly of the bread wheat variety Chinese Spring based on Illumina short sequence reads assembled with NRGene’s DeNovoMAGICTM software.

The public-private collaborative project is coordinated by the IWGSC and co-led by Stein, Curtis Pozniak of the University of Saskatchewan’s Crop Development Centre in Canada, Andrew Sharpe of the Global Institute for Food Security in Canada, and Jesse Poland of Kansas State University in the United States. Project participants also include researchers from Illumina; NRGene in Israel and the United States; Tel Aviv University in Israel; and the French National Institute for Agricultural Research (INRA).

Funding for this project was provided by Genome Canada, Genome Prairie, Saskatchewan Ministry of Agriculture, the Saskatchewan and Alberta Wheat Development Commissions, and the Western Grains Research Foundation through the Canadian Triticum Applied Genomics (CTAG2) project, Kansas State University through the US National Science Foundation Plant Genome Research Program, and Illumina.

“The preliminary results obtained by NRGene are impressive,” said Kellye Eversole, IWGSC executive director, in a news release. “We have been waiting for a number of years to have a high quality whole genome sequence assembly that would complement our chromosome based strategy and accelerate the delivery of the sequence. Thus, this assembly comes exactly at the right time because it can be integrated with the IWGSC chromosome specific resources developed over the past 10 years (e.g., chromosome shotgun sequences, physical maps, and physical map-based sequencing) to deliver a high quality reference sequence for the wheat genome in less than two years.”

The whole genome assembly data will be integrated with physical-map based sequence data to produce a high-quality, ordered sequence for each wheat chromosome that precisely locates genes, regulatory elements, and markers along the chromosomes, providing invaluable tools for wheat breeders, reports the IWGSC.

“This new wheat genome sequence generated by the IWGSC and its partners is an important contribution to understanding the genetic blueprint of one of the world’s most important crops,” said Pozniak in the release. “It will provide wheat researchers with an exciting new resource to identify the most influential genes important to wheat adaptation, stress response, pest resistance, and improved yield.”

Results of the whole genome assembly will be presented at several workshops at the Plant & Animal Genome Conference taking place in San Diego, Calif., from Jan. 9-13. All data will be available in the IWGSC wheat sequence repository at URGI-INRA.

Wheat is the staple food for more than 35 per cent of the global human population and accounts for 20 per cent of all calories consumed throughout the world, reports the IWGSC. As global population grows, so too it appears would its dependence on wheat. To meet future demands of a projected world population of 9.6 billion by 2050, wheat productivity needs to increase by 1.6 per cent each year, states the consortium. Since availability of new land is limited to preserve biodiversity and water and nutrient resources are becoming scarcer, the majority of this increase has to be achieved via crop and trait improvement on land currently cultivated, the group further notes, adding that a high quality reference genome sequence will provide the detailed genomic information necessary to underpin wheat research ensuring achievement of this goal.

The IWGSC, with more than 1,100 members in 55 countries, is an international, collaborative consortium, established in 2005 by a group of wheat growers, plant scientists, and public and private breeders.



Add comment


Security code
Refresh

Subscription Centre

 
New Subscription
 
Already a Subscriber
 
Customer Service
 
View Digital Magazine Renew

Most Popular

Latest Events

No events

We are using cookies to give you the best experience on our website. By continuing to use the site, you agree to the use of cookies. To find out more, read our Privacy Policy.